
Common Optimization
Mistakes

PHP Quebec 2009

Ilia Alshanetsky
http://ilia.ws
ilia@ilia.ws

1Friday, March 6, 2009

http://ilia.ws
http://ilia.ws
mailto:ilia@ilia.ws
mailto:ilia@ilia.ws

Premature
Optimization

=

Solve the business case,
before optimizing the

solution

2Friday, March 6, 2009

Don’t Over Engineer

• Understand your audience

• Estimate the scale and growth of your
application (based on facts, not
marketing fiction)

• Keep timelines in mind when setting
the project scope

3Friday, March 6, 2009

Simplify, Simplify &
Simplify!

• Break complex tasks into simpler sub-
components

• Don’t be afraid to modularize the code

• More code does not translate to slower
code (common misconception)
PHP has grown from less than 1 million LOC to over 2 million LOC
since 2000 and has become at least 4 times faster.

Linux kernel code base increase by 40% since 2005 and still
managed to improve performance by roughly the same margin.

LOC stats came from ohloh.net

4Friday, March 6, 2009

Hardware is Cheaper!

VS

In most cases applications can gain vast
performance gains by improving hardware,
quickly rather than slow, error prone code

optimization efforts.
5Friday, March 6, 2009

Hardware
• CPU bottlenecks can be resolved by

more cores and/or CPUs. Typically
each year yields 20-30% speed
improvements over past year’s CPU
speeds.

• Ability to handle large amounts of
traffic is often hampered by limited

6Friday, March 6, 2009

Hardware

• Drives are often the
most common
bottleneck,
fortunately between
RAID and Solid State
you can solve that
pretty easily now a
days.

7Friday, March 6, 2009

Hardware Caveat
• While quick to give results, in some

situations it will not help for long:

• Database saturation

• Non-scalable code base

• Network bound bottleneck

• Extremely low sessions - per - server
ratio

8Friday, March 6, 2009

Optimize, but don’t
touch the code

• Typically introduces substantial
efficiencies

• Does not endanger code integrity

• Usually simple and quick to deploy

• In the event of problems, often simple
to revert

9Friday, March 6, 2009

• This cycle happens
for every include
file, not just for the
"main" script.

• Compilation can
easily consume
more time than
execution.

PHP Script

Zend Compile

Zend Execute

@
includ

e/re
quire

method
function

call
10Friday, March 6, 2009

Compiler/Opcode Cache

• Each PHP script is compiled only once for each
revision.

• Reduced File IO, opcodes are being read from
memory instead of being parsed from disk.

• Opcodes can optimized for faster execution.

• Yields a minimum 20-30% speed improvement
and often as much as 200-300%

11Friday, March 6, 2009

Quick Comparison

0

50

100

150

200

FUDforum
Smarty

phpMyAdmin

Stock PHP
APC
PHP Accelerator
eAccelerator
Zend Platform

12Friday, March 6, 2009

Use In-Memory Caches

• In-memory session storage is MUCH
faster than disk or database equivalents.

• Very simple via memcache extension

Also allows scaling across multiple
servers for improved reliability and
performance.

session.save_handler = “memcache”

session.save_path = “tcp://localhost:11211”

13Friday, March 6, 2009

Everything has to be
Real-time

14Friday, March 6, 2009

Complete Page Caching

• Squid Proxy

• Page pre-generation

• On-demand caching

15Friday, March 6, 2009

Partial Cache - SQL

• In most applications the primary
bottleneck can often be traced to
“database work”.

• Caching of SQL can drastically reduce
the load caused by unavoidable,
complex queries.

16Friday, March 6, 2009

SQL Caching Example

$key = md5(“some sort of sql query”);
if (!($result = memcache_get($key))) {

$result = $pdo->query($qry)->fetchAll();
 // cache query result for 1 hour

memcache_set($key, $result, NULL, 3600);
}

17Friday, March 6, 2009

Partial Cache - Code

• Rather than optimizing complex PHP
operations, it is often better to eliminate
them entire via the use of cache.

• Faster payoff

• Lower chance of code breakage

• More speed than code optimization

18Friday, March 6, 2009

Code Caching Example
function complex_function_abc($a, $b, $c) {

$key = __FUNCTION__ .
serialize(func_get_args());
if (!($result = memcache_get($key))) {

$result = // function code
// cache query result for 1 hour
memcache_set($key, $result, NULL, 3600);

}
return $result;

}

19Friday, March 6, 2009

Database before code

• One of the most common mistakes
people make is optimizing code before
even looking at the database.

• Vast majority of applications have the
bottleneck in the database not the code!

20Friday, March 6, 2009

Compile your environment

• Distribution binaries suck!

• More often than not you can realize
10-15% speed increase by compiling
your own Apache/PHP/Database from
source. (unless you are using Gentoo)

21Friday, March 6, 2009

Output Buffering

• Don’t fear output buffering because it
uses ram, ram is cheap. IO, not so
much.

22Friday, March 6, 2009

23

• The goal is to pass off as much work to the kernel
as efficiently as possible.

• Optimizes PHP to OS Communication

• Reduces Number Of System Calls

Matching Your IO Sizes

PHP Apache OS Client

23Friday, March 6, 2009

24

• Efficient

• Flexible

• In your script, with ob_start()

• Everywhere, with output_buffering = On

• Improves browser’s rendering speed

PHP: Output Control

PHP Apache

24Friday, March 6, 2009

Apache: Output Control

• The idea is to hand off entire page to the
kernel without blocking.

• Set SendBufferSize = PageSize

Apache OS

25Friday, March 6, 2009

OS: Output Control
OS (Linux)

/proc/sys/net/ipv4/tcp_wmem

4096 16384 maxcontentsize

min default max

/proc/sys/net/ipv4/tcp_mem

(maxcontentsize * maxclients) / pagesize

✴ Be careful on low memory systems!

OS Client

26Friday, March 6, 2009

Don’t Assume

• One of the most
common mistakes done
even by experienced
developers is starting to
optimize code without
identifying the
problem.

Assume nothing,
profile everything!

27Friday, March 6, 2009

Profile, Profile & Profile

• Xdebug and APD extensions provide a
very helpful mechanism for identifying
TRUE bottlenecks in your code.

28Friday, March 6, 2009

Kcachegrind

Xdebug provides kcachegrind analyzable output that offers
an easy visual overview of your performance problems

29Friday, March 6, 2009

Micro Optimization

• Takes a long time

• Won’t solve your performance issues

• Almost guaranteed to break something

• Cost > Reward

30Friday, March 6, 2009

Speed vs Scale

• If you are planning for growth, scale is
far more important than speed!

• Focus on scalability rather than speed,
you can always increase scalable app,
by simply adding more hardware.

31Friday, March 6, 2009

Don’t Re-invent the wheel

• Most attempts to
make “faster”
versions of native
PHP functions using
PHP code are silly
exercises in futility.

32Friday, March 6, 2009

Write Only Code

• Removing comments won’t make code
faster

• Neither will removal of whitespace

• Remember, you may need to debug that
mess at some point ;-)

• Shorter code != Faster Code

33Friday, March 6, 2009

Thank You!
Any Questions?

Slides @ www.ilia.ws

34Friday, March 6, 2009

http://www.ilia.ws
http://www.ilia.ws

