
Common Optimization 
Mistakes

PHP Quebec 2009

Ilia Alshanetsky
http://ilia.ws
ilia@ilia.ws

1Friday, March 6, 2009

http://ilia.ws
http://ilia.ws
mailto:ilia@ilia.ws
mailto:ilia@ilia.ws


Premature
Optimization

=

Solve the business case, 
before optimizing the 

solution
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Don’t Over Engineer

• Understand your audience

• Estimate the scale and growth of your 
application (based on facts, not 
marketing fiction)

• Keep timelines in mind when setting 
the project scope
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Simplify, Simplify & 
Simplify!

• Break complex tasks into simpler sub-
components

• Don’t be afraid to modularize the code

• More code does not translate to slower 
code (common misconception)
PHP has grown from less than 1 million LOC to over 2 million LOC 
since 2000 and has become at least 4 times faster.

Linux kernel code base increase by 40% since 2005 and still 
managed to improve performance by roughly the same margin. 

LOC stats came from ohloh.net
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Hardware is Cheaper!

VS

In most cases applications can gain vast 
performance gains by improving hardware, 
quickly rather than slow, error prone code 

optimization efforts. 
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Hardware
• CPU bottlenecks can be resolved by 

more cores and/or CPUs. Typically 
each year yields 20-30% speed 
improvements over past year’s CPU 
speeds.

• Ability to handle large amounts of 
traffic is often hampered by limited 
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Hardware

• Drives are often the 
most common 
bottleneck, 
fortunately between 
RAID and Solid State 
you can solve that 
pretty easily now a 
days.
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Hardware Caveat
• While quick to give results, in some 

situations it will not help for long:

• Database saturation

• Non-scalable code base

• Network bound bottleneck

• Extremely low sessions - per - server 
ratio
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Optimize, but don’t 
touch the code

• Typically introduces substantial 
efficiencies

• Does not endanger code integrity

• Usually simple and quick to deploy

• In the event of problems, often simple 
to revert
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• This cycle happens 
for every include 
file, not just for the 
"main" script.

• Compilation can 
easily consume 
more time than 
execution.

PHP Script

Zend Compile

Zend Execute

@
includ

e/re
quire

method
function

call
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Compiler/Opcode Cache

• Each PHP script is compiled only once for each 
revision.

• Reduced File IO, opcodes are being read from 
memory instead of being parsed from disk.

• Opcodes can optimized for faster execution.

• Yields a minimum 20-30% speed improvement 
and often as much as 200-300%
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Use In-Memory Caches

• In-memory session storage is MUCH 
faster than disk or database equivalents.

• Very simple via memcache extension

Also allows scaling across multiple 
servers for improved reliability and 
performance.

session.save_handler = “memcache”

session.save_path = “tcp://localhost:11211”
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Everything has to be
Real-time
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Complete Page Caching

• Squid Proxy

• Page pre-generation

• On-demand caching
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Partial Cache - SQL

• In most applications the primary 
bottleneck can often be traced to 
“database work”.

• Caching of SQL can drastically reduce 
the load caused by unavoidable, 
complex queries.
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SQL Caching Example

$key = md5(“some sort of sql query”);
if (!($result = memcache_get($key))) {

$result = $pdo->query($qry)->fetchAll();
  // cache query result for 1 hour

memcache_set($key, $result, NULL, 3600);
}
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Partial Cache - Code

• Rather than optimizing complex PHP 
operations, it is often better to eliminate 
them entire via the use of cache.

• Faster payoff

• Lower chance of code breakage

• More speed than code optimization
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Code Caching Example
function complex_function_abc($a, $b, $c) {

$key = __FUNCTION__ . 
serialize(func_get_args());
if (!($result = memcache_get($key))) {

$result = // function code
// cache query result for 1 hour
memcache_set($key, $result, NULL, 3600);

}
return $result;

}
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Database before code

• One of the most common mistakes 
people make is optimizing code before 
even looking at the database.

• Vast majority of applications have the 
bottleneck in the database not the code!
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Compile your environment

• Distribution binaries suck!

• More often than not you can realize 
10-15% speed increase by compiling 
your own Apache/PHP/Database from 
source. (unless you are using Gentoo)
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Output Buffering

• Don’t fear output buffering because it 
uses ram, ram is cheap. IO, not so 
much.
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• The goal is to pass off as much work to the kernel 
as efficiently as possible. 

• Optimizes PHP to OS Communication

• Reduces Number Of System Calls

Matching Your IO Sizes

PHP Apache OS Client
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• Efficient

• Flexible

• In your script, with ob_start()

• Everywhere, with output_buffering = On 

• Improves browser’s rendering speed

PHP: Output Control

PHP Apache
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Apache: Output Control

• The idea is to hand off entire page to the 
kernel without blocking.

• Set SendBufferSize = PageSize

Apache OS
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OS: Output Control
OS (Linux)

/proc/sys/net/ipv4/tcp_wmem

4096    16384   maxcontentsize

min      default      max

/proc/sys/net/ipv4/tcp_mem

(maxcontentsize * maxclients) / pagesize

✴ Be careful on low memory systems!

OS Client
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Don’t Assume

• One of the most 
common mistakes done 
even by experienced 
developers is starting to 
optimize code without 
identifying the 
problem.

Assume nothing, 
profile everything!
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Profile, Profile & Profile

• Xdebug and APD extensions provide a 
very helpful mechanism for identifying 
TRUE bottlenecks in your code.
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Kcachegrind

Xdebug provides kcachegrind analyzable output that offers 
an easy visual overview of your performance problems
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Micro Optimization

• Takes a long time

• Won’t solve your performance issues

• Almost guaranteed to break something

• Cost > Reward
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Speed vs Scale

• If you are planning for growth, scale is 
far more important than speed!

• Focus on scalability rather than speed, 
you can always increase scalable app, 
by simply adding more hardware. 
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Don’t Re-invent the wheel

• Most attempts to 
make “faster” 
versions of native 
PHP functions using 
PHP code are silly 
exercises in futility.
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Write Only Code

• Removing comments won’t make code 
faster

• Neither will removal of whitespace

• Remember, you may need to debug that 
mess at some point ;-)

• Shorter code != Faster Code
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Thank You!
Any Questions?

Slides @ www.ilia.ws
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