
State of PHP
Security

Ilia Alshanetsky
ZendCon 2007

1

2

✦ Reactive rather then proactive

✦ Depends entirely on people reporting issues

✦ Little done to audit existing code for security
concerns

✦ Limited test-suit and tools to identify issues

✦ Design with features and not security in mind

3

✦ Frustrated security researchers

✦ Bug reporters prompt for 0-day
rather then responsible disclosure

✦ Bugs being solved and similar ones are being
introduced in other areas of the code

✦ Security regressions and/or incomplete fixes

The Consequences?

4

Solutions

5

Automated Code Analysis
✦ Improve quality of Coverity automated scanning by

working together with Coverity team

✦ Fewer false positives

✦ More meaningful results

✦ Easy to identify real issues and deploy solutions

✦ Close attention being paid to scan results

Until September 13th 2007 - No defects for 3 months

Of 37 new issues identified - 30 resolved or identified as
false positives in less then 10 days.

6

Test Suite Expansion
✦ More new tests

✦ Write tests for resolved
security bugs to prevent
regressions

✦ Focus more on corner cases
then common behavior

✦ Filter tests through
valgrind

✦ Focus on improving code
coverage

0

1,000

2,000

3,000

4,000

5.0 5.1 5.2 5.2.4

1,250

1,914

2,699

3,886

of Tests

http://gcov.php.net/

7

http://gcov.php.net
http://gcov.php.net

Use Fuzzing to Find Bugs
✦ Develop a series of tools to try and identify

issues by generating bogus inputs and passing
them to functions

✦ Overly long strings (1 MB and longer)

✦ Strings with “strange” characters
embedded in them. (0x00, 0x0A, \, etc…)

✦ Big integers 2^24

✦ Bogus resources

8

Give Credit Where It is Due
✦ Give credit in release

announcements & ChangeLog to
people discovering security bugs

✦ Communicate more rapidly with people
reporting security issues and be more open in
terms of expected resolution

✦ Try to involve bug reporters in the resolution
process

9

What did we fix?

10

✦ The big push in 5.2.0-5.2.1
was thanks to fuzzing
performed by Stas, Tony
and myself.

✦ 5.2.0 - 5.2.2 resolved many
issues that were identified
by Stefan Esser as part of
M.O.P.B.

✦ Contributions by many
different security
researchers.

0

5

10

15

20

5.2.0 5.2.1 5.2.2 5.2.3 5.2.4

10

19

15

6

12

Per-Release Security Fixes

11

What were the problems?
✦ open_basedir and safe_mode bypasses

✦ A fair number of buffer and integer overflows

✦ Denial of service attacks by crashing PHP and
subsequently a web-server thread

✦ Validator issues inside the newly added filter
extension

✦ Several string format vulnerabilities

12

Exploitability
✦ Majority of the identified issues can only be

triggered by a local user.

The ones that are remote,
require certain, not trivial

to match conditions.

✦ However, it takes just one hostile local user
on an shared server or a badly written script
to turn a local exploit into a remote one!

13

Most Affected Areas
✦ String functions inside ext/standard

✦ Session, GD, mbstring, interbase, imap,
filter, zip and ODBC extensions.

✦ File operations inside ext/standard

✦ mail() function

✦ SOAP and XMLRPC extension (remote
exploit)

14

Security Enhancements
✦ Added internal heap protection to reduce

consequences of buffer overflows

✦ Memory limit is now always enabled

✦ Filter extension was introduced and enabled
by default

✦ Introduced allow_url_include setting that is
disabled by default

✦ Added nesting limit on input arrays

15

What else is
needed?

16

Get People to Upgrade
4.4.7 4.4.4 4.3.10 4.4.2
4.4.6 4.3.11 Other

5.2.3 5.1.6 5.2.0 5.2.1 5.0.4
5.1.4 5.1.2 5.2.2 Other

Overall PHP 4 still comprises 77.72%
of all installations

Data provided by Damien Seguy
17

Improve Code Coverage
✦ As you saw from previous

slides the number of tests
had increased by nearly
200%.

✦ Conversely code coverage
went up only by about 4%
in the last year

**The drop in coverage was caused by addition of new
code through new extensions.

18

Manual Code Auditing
✦ More manual code auditing needs to be

performed with a focus on security

✦ Newly added code (extensions, functions,
etc…) needs to be examined for security as a
criterial for inclusion

✦ Looks at all crash bugs as potential exploits
until examination is done to prove otherwise

19

Better Communication
✦ Improve communication with Open Source

distributions in respect to security fixes

✦ More informative news announcements in
regard to security issues

✦ Better interaction with security researchers &
encourage more people to look at PHP’s
security

20

Rapid Release Cycle

✦ Release early, release often

✦ Micro-security releases PHP-X.X.X-s[N]

21

More security features

✦ Look at common challenges developers have
when trying to develop secure PHP
applications and provide tools, not automation
(Ex. magic_quotes) to make it simpler

22

Thank you for listening
Additional Resources:

๏ These slides - http://ilia.ws

๏ Test suite & code coverage results - http://
gcov.php.net

๏ Writing new tests & testing snapshots -
http://qa.php.net/

๏ PHP 5 ChangeLog - http://www.php.net/
ChangeLog-5.php

23

http://ilia.ws
http://ilia.ws
http://gcov.php.net
http://gcov.php.net
http://gcov.php.net
http://gcov.php.net
http://qa.php.net
http://qa.php.net
http://www.php.net/ChangeLog-5.php
http://www.php.net/ChangeLog-5.php
http://www.php.net/ChangeLog-5.php
http://www.php.net/ChangeLog-5.php

