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✦ Reactive rather then proactive

✦ Depends entirely on people reporting issues

✦ Little done to audit existing code for security 
concerns

✦ Limited test-suit and tools to identify issues

✦ Design with features and not security in mind
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✦ Frustrated security researchers

✦ Bug reporters prompt for 0-day 
rather then responsible disclosure

✦ Bugs being solved and similar ones are being 
introduced in other areas of the code

✦ Security regressions and/or incomplete fixes

The Consequences?
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Solutions
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Automated Code Analysis
✦ Improve quality of Coverity automated scanning by 

working together with Coverity team

✦ Fewer false positives

✦ More meaningful results

✦ Easy to identify real issues and deploy solutions

✦ Close attention being paid to scan results

Until September 13th 2007 - No defects for 3 months

Of 37 new issues identified - 30 resolved or identified as 
false positives in less then 10 days.
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Test Suite Expansion
✦ More new tests

✦ Write tests for resolved 
security bugs to prevent 
regressions

✦ Focus more on corner cases 
then common behavior

✦ Filter tests through 
valgrind

✦ Focus on improving code 
coverage
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Use Fuzzing to Find Bugs
✦ Develop a series of tools to try and identify 

issues by generating bogus inputs and passing 
them to functions

✦ Overly long strings (1 MB and longer)

✦ Strings with “strange” characters 
embedded in them. (0x00, 0x0A, \, etc…)

✦ Big integers 2^24

✦ Bogus resources
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Give Credit Where It is Due
✦ Give credit in release 

announcements & ChangeLog to 
people discovering security bugs

✦ Communicate more rapidly with people 
reporting security issues and be more open in 
terms of expected resolution

✦ Try to involve bug reporters in the resolution 
process
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What did we fix?
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✦ The big push in 5.2.0-5.2.1 
was thanks to fuzzing 
performed by Stas, Tony 
and myself.

✦ 5.2.0 - 5.2.2 resolved many 
issues that were identified 
by Stefan Esser as part of 
M.O.P.B.

✦ Contributions by many 
different security 
researchers.
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What were the problems?
✦ open_basedir and safe_mode bypasses

✦ A fair number of buffer and integer overflows

✦ Denial of service attacks by crashing PHP and 
subsequently a web-server thread

✦ Validator issues inside the newly added filter 
extension

✦ Several string format vulnerabilities
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Exploitability
✦ Majority of the identified issues can only be 

triggered by a local user.

The ones that are remote, 
require certain, not trivial 

to match conditions.

✦ However, it takes just one hostile local user 
on an shared server or a badly written script 
to turn a local exploit into a remote one!
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Most Affected Areas
✦ String functions inside ext/standard

✦ Session, GD, mbstring, interbase, imap, 
filter, zip and ODBC extensions.

✦ File operations inside ext/standard

✦ mail() function

✦ SOAP and XMLRPC extension (remote 
exploit)
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Security Enhancements
✦ Added internal heap protection to reduce 

consequences of buffer overflows

✦ Memory limit is now always enabled

✦ Filter extension was introduced and enabled 
by default

✦ Introduced allow_url_include setting that is 
disabled by default

✦ Added nesting limit on input arrays
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What else is 
needed?
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Get People to Upgrade
4.4.7 4.4.4 4.3.10 4.4.2
4.4.6 4.3.11 Other

5.2.3 5.1.6 5.2.0 5.2.1 5.0.4
5.1.4 5.1.2 5.2.2 Other

Overall PHP 4 still comprises  77.72% 
of all installations

Data provided by Damien Seguy
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Improve Code Coverage
✦ As you saw from previous 

slides the number of tests 
had increased by nearly 
200%.

✦ Conversely code coverage 
went up only by about 4% 
in the last year

**The drop in coverage was caused by addition of new 
code through new extensions.
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Manual Code Auditing
✦ More manual code auditing needs to be 

performed with a focus on security

✦ Newly added code (extensions, functions, 
etc…) needs to be examined for security as a 
criterial for inclusion

✦ Looks at all crash bugs as potential exploits 
until examination is done to prove otherwise
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Better Communication
✦ Improve communication with Open Source 

distributions in respect to security fixes

✦ More informative news announcements in 
regard to security issues

✦ Better interaction with security researchers & 
encourage more people to look at PHP’s 
security
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Rapid Release Cycle

✦ Release early, release often

✦ Micro-security releases PHP-X.X.X-s[N]
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More security features

✦ Look at common challenges developers have 
when trying to develop secure PHP 
applications and provide tools, not automation 
(Ex. magic_quotes) to make it simpler
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Thank you for listening
Additional Resources:

๏ These slides - http://ilia.ws

๏ Test suite & code coverage results - http://
gcov.php.net

๏ Writing new tests & testing snapshots - 
http://qa.php.net/

๏ PHP 5 ChangeLog - http://www.php.net/
ChangeLog-5.php
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