High Performance
PHP

OOP Tweaks

Always declare your statics!

Dynamic methods accessed statically are 50%+ slower.

Quick Static Benchmark

Conclusion®

T () o0

.. Declared [Non-Declared

Declaring static methods as was done in
eZComponents gives us a 60% speed boost.

Use Class Constants!

Advantages

Parsed at compile time, no execution
overhead.

Faster lookups due to a smaller hash.

“Namespacing” & shorter hash names.

Cleaner code speeds up debugging ;-)

require_once() is once too
many!

{692]% grep -nrI \
"require once\ (NN Ggrep v tests \
| grep -v docs | grep -v "*"

Database/src/test.php:228: require_once($path);

{6931$

Why does eZComponents not use a seemingly
helpful require_once() and instead insists on using
require() + manual duplication checks?

What happens in the
background?

lstat64("/tmp", {st mode=S IFDIR|S ISVTX|0777, st size=7368, ...}) =0
lstat64("/tmp/a.php", {st_mode=S IFREG|0644, st size=6, ...}) =0
fstat64(3, {st mode=S IFREG|0644, st size=6, ...}) =0

fstat64(3, {st_mode=S IFREG|0644, st _size=6, ...}) =0

lstat64("/tmp", {st mode=S IFDIR|S ISVTX|0777, st size=7368, ...}) =0

lstat64("/tmp/a.php", {st_mode=S IFREG|0644, st size=6, ...}) =0

fstat64(3, {st mode=S IFREG|0644, st size=6, ...}) =0
fstat64(3, {st_mode=S IFREG|0644, st _size=6, ...}) =0

The “ONCE” Problem

e Require/Include Once constructs open
ile on each call!

e Fixed in PHP 5.2/6.0 for full paths
e Fixed if using CVS version of APC

Increased File 10

Avoid Pointless Function
Calls

Base/src/base.php:5038

Archive/src/archive.php:436

Mail/src/parser/parser.php:95

Use Native Constants
e php_uname(‘s’) == PHP _OS
e php_version() == PHP_ VERSION
e php_sapi_name() == PHP_SAPI

.50

<.08
1.88

1.25

0.04

PHI'_OS php_uname() php_uname(s’)

Fastest Winé& Detection
B in the West!

e Does not use functions

e Does not care about
WinXP, WinN'T,
Windows, Windows98,
NT 5.0, etc...

e Always available

What time is it?

Rather then calling
time(), time() and
time() again, use

¢ SERVER
[‘REQUEST TIME’]

Provides a timestamp,
with a second precision,
without any function
calls.

PCRE’s Slowdowns

Mail/src/tools.php:318

Template/src/fu

ctions/string_fu:

ctions.php:185

Non-Capturing Patterns

Placing “: at the start of a sub-pattern
makes it non-capturinsg.

(?:)
This means PHP/PCRE does not need to

allocate memory to store the matched
content block.

(?:)

End Result®

.. Capuring
.. Non-Capturing

Seconds

A 15% performance improvement, with a 2
character change.

Avoid Regex if Possible

Template/src/parsers/ast_to_php/implementations/php_generator.php:287
Template/src/parsers/ast_to_php/implementations/php_generator.php:336

In this case it would be simpler and to
mention faster
to use a regular str_replace()

Seconds

Speed Comparison

45.00

340 43 .64 44.86
33.75
22.50

v 16.29
11.25 13.76 ’15 10 13.79
e ‘»4 e e
0 5.92 4%§ 6.10 5.93
1tol 1 to 2 l1to3 & to 2

v preg_replace
® str_replace
& gstrtr

Use strtr() properly

While browsing Cache/src/storage/file.php,
I found the following code:

Any ideas on how we can make this code
10 times faster?

Use strings!

Elimination of array operations speeds up
the code and simplifies the internal work
in strtr() function.

4.29 \ ‘
SECONds

W strtr(string)
B strtr(array)

Don’t Replace When you
don’t have to!

Any replacement operation requires
memory, if only to store the “modified”
result.

A quick strpos() to determine if any
replacement is actually needed can save
memory and improve performance!

= (1);

for (= 0; < : ,f”jﬁf?;' |
('ZendStudio', 'ezPublish',) ; =
echo "non-check (no-match): ".(-)."\n"; 5 th.

news iles,
for=(= (i; . ++) ‘]?cyllégkllsf E)ESIKIJ 11].

we

if ((, ZendStudio') !==) x;w",
('ZendStudio’', 'ezPublish',) B E;IEZEB
= (1)
echo "check (no-match): ".(=)."\n";
(1)
= 0; < ; ++)
match ('Ilia’', 'Derick’,) ;
o (L)7
B echo "non-check (match): ".(=)."\n";
no-match = (1)
M for (= 0; < ; ++)
| i if ((, 'Ilia') l==)
O L.re 400 825 700 ('Ilia', 'Derick’,) i
B se = (1);
. regular . w/check 8 echo "check (match): ".(-)."\n";

operator is evil!

The error blocking operator, is the most
expensive letter in PHP’s alphabet.

This seemingly innocuous operator
actually performs fairly intensive
operations in the background.

Fortunately, for ezComponents users, it is
used only a few dozen times.

To@ornotto %

S3X speed difference !

With 5 iterations
changing error mode
manually is even faster!

Comparing Strings

The good

The bad

And the ugly

Quick Benchmark

———— PP o
Sl — 12070 TR

867 gw3 959

strcm -0
PO substr() b

EREG

. Case Sensetive jl Non-Case Sensetive

Compare from an offset

As of PHP 5, you don’t need to substr()

string segments from non-start position
to compare them thanks to
substr_compare().

But is it faster?

.. substr()
.. Substr_compare()

=0

Non-Case Sensetive

Unfortunately, in most cases, the answer is
Unless:
* Comparing case-insensitively
* Comparing large strings

PHP “Wackiness”

Which would you think be faster

or perhaps?

surprise! !

Unless you are using PHP-CVS the longer,
implode() + array_wvalues() is actually
faster then direct implode().

O 038 ows 1.18 150
\ | | .

Associated
w PHP 4/5 (long)

B PHP 4/5 (short)
B PHP-CVS (long)
Wl PHP-CVS (short)

Numeric

constants != strings

One of my biggest pet-peeves in PHP is this
kind of nonsense:

Fortunately, ezComponents does not use it ;-)

Why is it bad?

A whole slew of pointless operations:
& hash lookups

tolower on the constant name

E NOTICE about an undefined
constant

temporary string creation

Quick Benchmark

/* vs */

2.50 o
S chars 2.70

6 chars 3.07
L constant 17 chars ™=

 string

Simplify for() loop

If speed is of the essence don’t do

ConsoleTools/src/table.php:515

or this

ConsoleTools/src/input.php:690

or that

Mail/src/tools.php:181

Simplify for() loop

By taking out the function out of the for()
you save exactly 1 function call per
iteration.

/* vs */

/* vs */

O 0.4 0.8
: . 1.2
| 1.6 20

0.21

count() o7 po— Before
B After

1.53
strlen() »

42 | l

Shorter |= Faster

For reasons yet to be
determined, people think
that code translates
to code. More often
then not, it is simply

|

Let’s Compare

Database/src/sqlabstraction/query update.php (170 - 179)

5.00

Ber 5,750

—— R.50

RS

el

Let’s try again

Paraphrased from File/src/

/* original */

/* versus */

/* versus */
/* includes . and .. */

ile.php

u Original o glob()
B scandir() o Original w/o OO
B SPL

Strings & Variables

| .

ez Comp.

Longer is still faster ;-)

L “{$key] = {$value}"" n “$key = $value”
B $key’ ‘.$value .. heredoc
.. heredoc {}

Seconds =

Recursion & Performance

|

eZ Components

Recursion & Performance

.. rdir() l stackdir() [SPL

e 30.0

— &R.5

— 18.0

4.99 508

EzComponents

PHP 5.2

Thank you for listening

~

\

olides available at: http://www.ilia.ws/

http://www.ilia.ws
http://www.ilia.ws

