Accelerating PHP
Applications

Ilia Alshanetsky
NEICGNERYE

Bytecode/Opcode Caches

This cycle happens
for every include

file, not just for

the "main” script.

Compilation can
easily consume
more time than
execution.

:E.:U-TE

(FUNCTION/ME THDD]

Bytecode/Opcode Caches

BEEMN SEEN

Benefits:

» Each PHP script is compiled only
once for each revision.

» Reduced File IO thanks to
opcodes being read from memory
rather then being parsed from disk.

» Since compilation is one time
event, generated opcodes can
optimised for faster execution.

Cache Implementations

Different Caches Implementations:
o APC
I . Zend
Performance

] Slies
Turck MM Cache
I "/ eAccelerator

|G S NS SO N W —— e PHP Accelerator

IPS

2.5 5 7.5 10 125 15 175
Requests per second

Compiler Optimisations

For absolute maximum: performance it may be a
good idea to ensure that all software is compiled to
the take maximum advantage of the available
hardware.

» Enable all compiler optimizations with -O3

» Make the compiler tune the code to your CPU via -march
-mcpu

» Try to make the compiler use CPU specific features -msse
-mmmx -mfpmath=sse

export CFLAGS="-03 -msse - mmmx -march=pentium3 \
-mcpu=pentium3 -funroll-loops - mfpmath=sse"

Reduce Binary/Library Size

Eliminate waste by removing symbols from
object files using strip utility.

Saves disk space and more importantly
memory needed to load the library or run
the binary. In case of PHP makes the binary
or Apache loadable module smaller.

Very useful for CLI/CGI PHP binaries.

Apache/PHP Integration

For maximum performance compile PHP statically
into Apache (up to30% speed increase). Or use

PHP 4.3.11+ where --prefer-non-pic is default.

How to compile PHP statically into Apache

PHP
.Jconfigure --with-apache=/path/to/apache_source

Apache
./Jconfigure --activate-module=src/modules/php4/libphp4.a

Web Server: File 10

» Keep DirectoryIndex file list as short as
possible.

» Whenever possible disable .htaccess via
AllowOverride none.

» Use Options FollowSymLinks to simplify file
access process in Apache.

» If logs are unnecessary disable them.

> If logging is a must, log everything to 1 file and
break it up during analysis stage.

Web Server: Syscalls

Syscall is function executed by the Kernel.
The goal is to minimise the number of these
calls needed to perform a request.

»> Do not enable ExtendedStatus
» For Deny/Allow rules use IPs rather then domains.
» Do not enable HostnameLookups.
> Keep ServerSignature off

Web Server: KeepAlive

In theory KeepAlive is supposed to make
things faster, however if not used carefully it
can cripple the server.

In Apache set KeepAlive timeout,
KeepAliveTimeout as low as possible (10
secs).

If the server is only serving dynamic
requests, disable KeepAlive.

PHP Compilation

By default PHP enables quite a few
extensions, very few people actually need
them.

Extensions that are rarely used, should be
compiled as shared modules and loaded by
the few scripts requiring them.

--disable-all and --disable-cgi simplify PHP
builds.

Matching Your 1O Sizes

> The goal is to pass off as much work
to the kernel as efficiently as possible.

»Optimizes PHP <--> OS
Communication

»Reduces Number Of System Calls

Output Buffering

Individual write() calls

; buffered to 4K
W I t h O U t Small writes |:|'!-|:I'EEI'IEIE~ DEEA ULT_BUFE'EE!I

Output

" Large writes Triggered to use writev()
With

mare efficient s
N OE—)
Buffer -

Network Buffer Sizing

> Efficient
> Flexible
> In your script with ob_start()

> Everywhere with output_buffering =
On (php.ini)

> Improves browser page rendering
speed.

Output Buffering

Idea is to hand off entire page to the
kernel without blocking.

Buffer Size requested via Apache's SendBufferSize.
Regulated via kemel tep buffer size limits.

:

SendBufferSize = PageSize

In Apache:

Network Buffer Sizing Cont.

OS (Linux)
/proc/sys/net/ipv4/tcp. wmem
4096 16384 maxcontentsize
min default max

/proc/sys/net/ipv4/tcp_mem
(maxcontentsize * maxclients) / pagesize

Be careful on low memory systems!

Final Picture

E O E OB E

—~

Regulated by PHP Output Buffering Apache and Kernel Buffer Negotitaion

Bandwidth Optimizations

Less output is good because...

> Saves server bandwidth (saves $$ too).

> Reduces server resource usage
(CPU/Memory/Disk)

> Pages load faster for clients.

> Reduces network IO high traffic sites,

where it is the primary bottleneck in
MOosSt cases.

Content Compression

> Most browser support retrieval of
compressed pages decompressing them
before rendering.

> Compressed pages are on average are
/-10 times smaller, however
compression can take 3%-5% of CPU.

Implementations:
> Apache 1 (mod_gzip)
> Apache 2 (mod_deflate)

> PHP
= php.ini (zlib.output _compression=1)
= script (ob_start(“ob_gzhandler™))

Content Reduction

Use preprocessor such as tidy extension

to eliminate white-space and any unnecessary
components from final HTML output.

(5-10% reduction on average)

<?php
$opts = array(''clean" => true,

"drop-proprietary-attributes” => true,

"drop-font-tags" => true,
"drop-empty-paras" => true,
"hide-comments" => true,
"join-classes" => true,
"join-styles" => true

);

$tidy = tidy_parse_file("php.html", $opts);

tidy_clean_repair($tidy);
echo $tidy;
?>

clean=1
drop-proprietary-attributes=1
drop-font-tags=1
drop-empty-paras=1
hide-comments=1
join-classes=1

join-styles=1

<?php
ini_set("tidy.default_config",

"/path/to/compact_tidy.cfg");
ini_set("tidy.clean_output”, 1);
?2>

Tuning PHP Configuration

register_globals = Off **
magic_quotes_gpc = Off

expose_php = Off

register_argc_argv = Off
always_populate_ raw. post data = Off **
session.use. trans_sid = Off **
session.auto_start = Off **
session.gc_divisor = 1000 or 10000
output_buffering = 4096

YV V. V V V V VYV VY V

** Off by default

Profiling & Benchmarking

> Identify Bottlenecks

> Track Resource Usage

> Generate Call Trees

> Create Progress Tracking Data

Tools

> Profiling/Benchmarking Web Server

* Apache Bench (http://apache.org)

* httperf
(http://freshmeat.net/projects/httperf/)

> PHP Profilers
* DBG (http://dd.cron.ru/dbg/)
= APD (PECL)
= Xdebug (http://xdebug.org/)

Web Server Testing

Server Software: Apache

Server Hostname: localhost

Server Port: 80

Document Path: /php.php

Document Length: 46844 bytes

Concurrency Level: 10

Time taken for tests: 0.265 seconds

Complete requests: 100

Failed requests: 0

Broken pipe errors: 0

Total transferred: 5077082 bytes

HTML transferred: 5061168 bytes

Requests per second: 377.36 [#/sec] (mean)

Time per request: 26.50 [ms] (mean)

Time per request: 2.65 [ms] (mean, across all concurrent requests)
Transfer rate: 19158.80 [Kbytes/sec] received
Connection Times (ms) min mean[+/-sd] median max
Connect: 0 8 5.2 8 20

Processing: 22 16 5.2 16 25

Waiting: 3 14 5.5 14 24

Total: 22 24 3.2 24 44

PHP Profilers (APD)

PHP profilers come in a form
of Zend modules that sit
around the executor and
collect information about the
executed functions.

How to Install:
pear install apd

Then add the following to your php.ini

zend_extension=/path/to/apd.so

Generating A Trace

Profiling of script is started from the point when

The apd_set_pprof_trace() function is called.
All code executed prior will not be profiled.

<?php
$parts = preg split("!\s!", "a b c");

To avoid having to
modify every file in the
function test (s&$var) { application, you can use

$var = base64 encode (trim($var)) ; the E_IU_tO_a_ppend_ﬂle
} B php.ini setting to
activate profiling for
apd_set_pprof_trace(); entire application.

array walk($parts, 'test');
9

Understanding The Trace

Real User System secs/ cumm

%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name

82.4 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0007 0.0007 apd_set pprof trace
10.2 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0000 0.0000 trim

4.3 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0000 0.0000 base64 encode

1.9 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0000 0.0000 test

0.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0001 array walk

0.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0008 main

Tuning PHP File Access

Whenever opening files or including scripts into
the main script try to specify a full path or at
least an easily resolvable partial path.

Bad Approach:

<?php

include "file.php";
?>

Performance Friendly Approach:
<?php
include "/path/to/file.php";

include "./file.php";
P

Regular Expressions

While very useful tool for string manipulation,
regular expression leave much to be desired
when it comes to performance.

<?php

if (preg match("!“foo !'i", "FoO ")) { 1}

if (!'strncasecmp("foo ", "FoO ", 4)) { }

if (preg match("![a8£f9]!", "sometext")) { }

if (strpbrk("a8f9", "sometext")) { }
2

Don’t Reinvent the Wheel

PHP has hundreds functions and tens of
extension. Rather then implementing
functionality in PHP, try to see if the task

can be done via a native function.
<?php
Sdata = '';
$fp = fopen("some file", "xr");
while ($fp && !'feof ($fp)) {
Sdata .= fread($fp, 1024);

}
fclose ($£fp) ;

$data = file get contents("some file");
2

Reference Tricks

References can be a valuable tool to simplify and
accelerate access to complex data types as well
as a memory saving tool. BSg9:Ns

$Sa = "abc";

<?php
$a['b']['c'] = array();

function a($str) {

return $str . "d";
for($i = 0; $i < 5; $i++)

}
$a['b']['c']1[81] = S$i;

Sa = a($a);

function b (&$str) {
$Sstr .= "d";

Sref =& Sa['b']['c'];
for($i = 0; $i < 5; $i++)

Sref[$i] = $i; }

b(Sa);

What Is Caching?

Caching is the recognition and
exploitation of the fact that
most "dynamic” data does not
change every time you request
it.

How Does It Work?

(Page ""J
Request

Generate ""i:r"ntm'nﬁnl TN
Dynamic Cacheable
Content

Generate
Dynamic
Content

t"‘ Return : Fetch Cache
., content Content

Content Caching

function cache start()

{
global $cache file name;
$cache file name = FILE . ' cache';

Sage = 600;

if (@filemtime($cache_fi1e_name) + Sage > time()) {

readfile ($cache file name) ;
unset ($cache file name); exit;

}
ob start();

Content Caching

function cache_end()

{
global $cache file name;

if (empty($cache file name)) return;

$str = ob _get clean();
echo $str;

fwrite (fopen(Scache file name.' tmp', "w"), $str);
rename ($cache file name.' tmp', Scache file name) ;

}

cache_start();

Content Caching

<?php
require "./cache.php";

$db = new sqlite db("gb.sqlite");
$r = $db->array query ("SELECT * FROM guestbook") ;

foreach ($r as $row)

echo $r->user . ' wrote on '
date ("Ymd", $r->date) . ":
\n"
$Sr->message . "<hr /><hr />";

Implementing cache without modifying the script

Add to .htaccess
php value auto prepend file "/path/to/cache.php"

Or to virtual host entry in httpd.conf
php admin value auto prepend file "/path/to/cache.php”

Pros and Cons of Caching

> Pros:
B Significant Speed Increases
® Reduction in consumption of some resources

> Cons:
® Tncrease in Architectural Complexity
® Potential for Stale or Inconsistent Data

On-Demand Caching

RewriteEngine on
Set up a 404) e
error handler RewriteRule /.*\.[*h][*t][*m][~1]$ /$1.html

. ErrorDocument 404 /index.php
in .htaccess: D3 .
irectoryIndex index.php

<?php
if ('empty($_ SERVER['REDIRECT URL'])) {

$current page = substr($ SERVER['REDIRECT URL'], strlen
(WEBBASE)) ;

}

if (!FORCE_DYNAMIC) {

echo $contents = ob get clean() ;

file put contents($lang."/".$current page.".html", 'w');
}

SQL & Performance

Most large applications will end
up using databases for
information storage. Improper
use of this resource can lead to
significant and continually
increasing performance loss.

Check Your Queries

Most databases offer mechanisms to analyze

query execution and determine if it’s running in
an optimal manner.

SLOW

EXPLAIN select * from mm users where login LIKE '%ilia%';

e et +-————- e +-———=- 4o +-————- 4o domm - +

| table | type | possible keys | key | key len | ref | rows | Extra |

e et +-————- e +-———=- 4o +-————- 4o domm - +

| mm users | ALL | NULL | NULL | NULL | NULL | 27506 | where used |

4o +-————- o - +-————- $-—— +-————- 4 d-mm - +

FAST

EXPLAIN select * from mm users where login LIKE 'ilia%';

$-——m - $-—————- e e $-—————- $-—m— - +-————- +-————- $-—mmm - +
| table | type | possible keys | key | key len | ref | rows | Extra |
$-——m - $-—————- e e $-—————- $-—m— - +-————- +-————- $-—mmm - +
| mm users | range | login | login | 50 | NULL | 2 | where used |

+-————— - +-—————- tomm - +-—————- +-————— - +-————- +-————- o——mmm - +

Optimize Query Execution

Executing one query at a time is boring (and slow), chain
them and execute many queries at once quickly.

<?php

for ($i = 0; $i < 10; $i++)
mysql query ("INSERT INTO foo VALUES ({$i})");

Squery = "INSERT INTO foo VALUES";
$query = " (" . implode("), (", array keys(array fill(0, 10, 1))).")";
mysql_query ($query) ;

Squery = '';
for ($i = 0; $i < 10; S$i++)

Squery .= "INSERT INTO foo VALUES ({$i});";
mysql query ($query) ;

Use Joins

Usage of joins allows:simplification & acceleration

Of the script by moving portions of the logic to the

database engine.
<?php

$a = sqlite fetch single($db,
"SELECT id FROM foo WHERE name='ilia'");
$b sqlite array query($db,

"SELECT * FROM bar WHERE id={$a}");

$b = sqglite array query($db,
"SELECT b.* FROM foo £ INNER JOIN bar b ON f.id=b.1id

WHERE f.name='ilia'");
)

Sub-Queries

Like Joins, Sub-queries can be used to move some
Of the logic from PHP into the database engine.

<?php
$b = sqlite array query ($db,

"SELECT * FROM bar WHERE id=(SELECT id FROM foo
WHERE name='ilia')");
?>

While sub-queries save you from the complexity
of joins, they are often slower then equivalent joins.

Database Systems

PHP can work with many
database systems. A poorly
chosen system can add
significant overhead to the
application.

Questions

